Code Documentation¶
-
config.
config
(filename='database.ini', section='postgresql')¶ This function is used to pick the configuration from the section in the provided file
- Parameters
filename – The path of the file which contains the configurations
section – The section inside the file which contains the configuration needed to connect to the database
- Returns
the database config needed to connect
-
connect_database.
connect_and_fetch_data
(query, params)¶ This function is used to connect to the database and fetch the rows from the database, given the query and config params of the database.
- Parameters
query – The select query to be used to fetch data
params – The parameters used to contact the database server
- Returns
list of rows in database fetched from the query
-
data_pre_processing.
clean_data
(X)¶ This function is used to clean the data in the dataset
- Parameters
X – the dataframe containing the features of the datapoints
- Returns
the dataframe with the clean, processed values of the features
-
data_pre_processing.
clean_labels
(Y)¶ This function is used to clean the labels in the dataset
- Parameters
Y – the array containing the labels of the datapoints
- Returns
the array of cleaned labels of the datapoints
-
data_pre_processing.
split_train_test
(X, Y, ratio=0.3)¶ This function is used to split the dataset into training and testing dataset
- Parameters
X – the feature set of the datapoints for regression prediction
Y – the labels of the datapoints
ratio – the test dataset ratio
- Returns
the training and testing datasets
-
regression_model.
regression_model_fit
(X, Y, model=LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False))¶ This function is used to fit the provided model with the training dataset provided
- Parameters
X – the feature set of the datapoints for regression prediction
Y – the labels of the datapoints
model – The regression model to be used
- Returns
the fitted regression model
-
regression_model.
regression_model_predict
(X, model)¶ This function is used to predict the labels for the test dataset provided
- Parameters
X – The feature set for which the prediction is to be made
model – The regression model used for the result
- Returns
The Y labels predicted by the model
-
error_analysis.
get_error
(Y_pred, Y_test)¶ This function is get the mean absolute error between the predicted label and the actual label
- Parameters
Y_pred – The predicted labels from the regression model
Y_test – The actual labels from the dataset
- Returns
The mean absolute error value
-
plot_results.
plot
(X, Y, Y_predicted, Y_baseline, X_label, Y_label, title)¶ This function plots the graph, given the data values
- Parameters
X – the feature value array to be plotted on X-axis
Y – the true label value array to be plotted on Y-axis
Y_predicted – the predicted label value array to be plotted on Y-axis
Y_baseline – the baseline label value array to be plotted on Y-axis
X_label – The label name to be used for X-axis
Y_label – The label name to be used for Y-axis
title – The title of the plot
- Returns
None